References and Notes
<A NAME="RU80511ST-1A">1a</A>
Moreno-Mañas M.
Pajuelo F.
Pleixats R.
J. Org. Chem.
1995,
60:
2396
<A NAME="RU80511ST-1B">1b</A>
Cortes J.
Moreno-Mañas M.
Pleixats R.
Eur.
J. Org. Chem.
2000,
239
<A NAME="RU80511ST-1C">1c</A>
Moreno-Mañas M.
Pleixats R.
Villarroya S.
Organometallics
2001,
20:
4524
<A NAME="RU80511ST-1D">1d</A>
Botella L.
Nájera C.
J. Organomet. Chem.
2002,
663:
46
<A NAME="RU80511ST-1E">1e</A>
Alonso DA.
Nájera C.
Pacheco MC.
J. Org. Chem.
2002,
67:
5588
<A NAME="RU80511ST-1F">1f</A>
Llobet A.
Masllorens E.
Rodríguez M.
Roglans A.
Benet-Buchholz J.
Eur.
J. Inorg. Chem.
2004,
1601
<A NAME="RU80511ST-1G">1g</A>
Nájera C.
Gil-Moltó J.
Karlström S.
Adv. Synth. Catal.
2004,
346:
1798
<A NAME="RU80511ST-1H">1h</A>
Singh R.
Viciu MS.
Kramareva N.
Navarro O.
Nolan SP.
Org.
Lett.
2005,
7:
1829
<A NAME="RU80511ST-1I">1i</A>
Kabalka GW.
Dadush E.
Al-Masum M.
Tetrahedron Lett.
2006,
47:
7459
<A NAME="RU80511ST-1J">1j</A>
Srimani D.
Sarkar A.
Tetrahedron Lett.
2008,
49:
6304
<A NAME="RU80511ST-1K">1k</A>
Gerbino DC.
Mandolesi SD.
Schmalz H.-G.
Podestá JC.
Eur.
J. Org. Chem.
2009,
3964
<A NAME="RU80511ST-1L">1l</A>
Alacid E.
Nájera C.
J. Organomet. Chem.
2009,
694:
1658
<A NAME="RU80511ST-1M">1m</A>
Crociani B.
Antonaroli S.
Burattini M.
Paoli P.
Rossi P.
Dalton.
Trans.
2010,
39:
3665
<A NAME="RU80511ST-1N">1n</A>
Ghosh R.
Adarsh NN.
Sarkar A.
J.
Org. Chem.
2010,
75:
5320
<A NAME="RU80511ST-1O">1o</A>
Civicos JF.
Alonso DA.
Nájera C.
Adv. Synth. Catal.
2011,
353:
1683
<A NAME="RU80511ST-2A">2a</A>
Uozumi Y.
Danjo H.
Hayashi T.
J. Org. Chem.
1999,
64:
3384
<A NAME="RU80511ST-2B">2b</A>
Badone D.
Baron M.
Cardamone R.
Ielmini A.
Guzzi U.
J.
Organomet. Chem.
1997,
62:
7170
<A NAME="RU80511ST-2C">2c</A>
Chen H.
Deng M.-Z.
J. Organomet. Chem.
2000,
603:
189
<A NAME="RU80511ST-2D">2d</A>
Bouyssi D.
Gerusz V.
Balme G.
Eur.
J. Org. Chem.
2002,
2445
<A NAME="RU80511ST-2E">2e</A>
Kabalka GW.
Al-Masum M.
Org. Lett.
2006,
8:
11
<A NAME="RU80511ST-2F">2f</A>
Mino T.
Kajiwara K.
Shirae Y.
Sakamoto M.
Fujita T.
Synlett
2008,
2711
<A NAME="RU80511ST-2G">2g</A>
Ohmiya H.
Makida Y.
Tanaka T.
Sawamura M.
J. Am. Chem. Soc.
2008,
130:
17276
<A NAME="RU80511ST-2H">2h</A>
Yamada YMA.
Watanabe T.
Torii K.
Uozumi Y.
Chem. Commun.
2009,
5594
<A NAME="RU80511ST-2I">2i</A>
Maslak V.
Tokic-Vujosevic Z.
Saicic RN.
Tetrahedron Lett.
2009,
50:
1858
<A NAME="RU80511ST-2J">2j</A>
Nishikata T.
Lipshutz BH.
J. Am. Chem. Soc.
2009,
131:
12103
<A NAME="RU80511ST-2K">2k</A>
Ohmiya H.
Makida Y.
Li D.
Tanabe M.
Sawamura M.
J. Am.
Chem. Soc.
2010,
132:
879
<A NAME="RU80511ST-2L">2l</A>
Pigge FC.
Synthesis
2010,
1745
<A NAME="RU80511ST-2M">2m</A>
Ohmiya H.
Yokokawa N.
Sawamura M.
Org.
Lett.
2010,
12:
2438
<A NAME="RU80511ST-2N">2n</A>
Li D.
Tanaka T.
Ohmiya H.
Sawamura M.
Org. Lett.
2010,
12:
3344
<A NAME="RU80511ST-2O">2o</A>
Makida Y.
Ohmiya H.
Sawamura M.
Chem. Asian.
J.
2011,
6:
410
<A NAME="RU80511ST-3A">3a</A>
Tsukamoto H.
Sato M.
Kondo Y.
Chem. Commun.
2004,
1200
<A NAME="RU80511ST-3B">3b</A>
Kayaki Y.
Koda T.
Ikariya T.
Eur.
J. Org. Chem.
2004,
4989
<A NAME="RU80511ST-3C">3c</A>
Tsukamoto H.
Uchiyama T.
Suzuki T.
Kondo Y.
Org. Biomol. Chem.
2008,
6:
3005
<A NAME="RU80511ST-3D">3d</A>
Kantam ML.
Kumar KBS.
Sreedhar B.
J. Org. Chem.
2008,
73:
320
Rh- and Ni-catalyzed cross-coupling
reactions of allylic acetates, allylic amines, and allylic alcohols
with arylboronic acids also have been reported, but, in these reactions,
the range of applicable substrates was very narrow.
<A NAME="RU80511ST-4A">4a</A> Rh:
Kabalka GW.
Dong G.
Venkataiah B.
Org. Lett.
2003,
5:
893
Ni:
<A NAME="RU80511ST-4B">4b</A>
Trost BM.
Spagnol MD.
J.
Chem. Soc., Perkin Trans. 1
1995,
2083
<A NAME="RU80511ST-4C">4c</A>
Chung K.-G.
Miyake Y.
Uemura S.
J.
Chem. Soc., Perkin Trans. 1
2000,
15
<A NAME="RU80511ST-5A">5a</A>
Kabalka GW.
Yao M.-L.
Borella S.
Wu Z.
Chem. Commun.
2005,
2492
<A NAME="RU80511ST-5B">5b</A>
Kabalka GW.
Yao M.-L.
Borella Z.
Wu Z.
Ju J.-H.
Quick T.
J. Org. Chem.
2008,
73:
2668
<A NAME="RU80511ST-6A">6a</A>
Leadbeater NE.
Marco M.
Angew.
Chem. Int. Ed.
2003,
42:
1407
<A NAME="RU80511ST-6B">6b</A>
Leadbeater NE.
Marco M.
J. Org. Chem.
2003,
68:
5660
<A NAME="RU80511ST-6C">6c</A>
Yan J.
Zhu M.
Zhou Z.
Eur.
J. Org. Chem.
2006,
2060
<A NAME="RU80511ST-7">7</A>
Shirakawa E.
Hayashi Y.
Itoh K.
Watabe R.
Uchiyama N.
Konagaya W.
Masui S.
Hayashi T.
Angew. Chem. Int. Ed.
2012,
51:
218
<A NAME="RU80511ST-8">8</A>
Scrivanti A.
Beghetto V.
Bertoldini M.
Matteoli U.
Eur. J. Org. Chem.
2011,
264
<A NAME="RU80511ST-9">9</A>
We also tested the reactivity of other
organoboronic acid derivatives. Potassium 4-methoxyphenyltrifluoroborate
was able to react with 1a, but the yield
was low (25%). Pinacol ester of 1a did
not work as a substrate.
<A NAME="RU80511ST-10">10</A>
The use of Cs2CO3 in
the absence of H2O gave 3aa in
a moderate yield (60%).
<A NAME="RU80511ST-11">11</A>
In the general conditions, phenylboronic
acid (1h) gave the cross-coupling product 3ha in a poor yield (7% yield),
and the reaction of 4-acetylphenylboronic acid with 2a did
not give the corresponding product.
<A NAME="RU80511ST-12A">12a</A>
Yamada YMA.
Takeda K.
Takahashi H.
Ikegami S.
J. Org. Chem.
2003,
68:
7733
<A NAME="RU80511ST-12B">12b</A>
Alacid E.
Nájera C.
Org. Lett.
2008,
10:
5011
<A NAME="RU80511ST-13A">13a</A>
Huang X.-T.
Chen Q.-Y.
J.
Org. Chem.
2001,
66:
4651
<A NAME="RU80511ST-13B">13b</A>
Loy RN.
Sanford MS.
Org.
Lett.
2011,
13:
2548
<A NAME="RU80511ST-14A">14a</A>
Petasis NA.
Zavialov IA.
Tetrahedron Lett.
1996,
37:
567
<A NAME="RU80511ST-14B">14b</A>
Salzbrunn S.
Simon J.
Prakash GKS.
Petasis NA.
Olah GA.
Synlett
2000,
1485
<A NAME="RU80511ST-14C">14c</A>
Prakash GKS.
Panja C.
Mathew T.
Surampudi V.
Petasis NA.
Olah GA.
Org.
Lett.
2004,
6:
2205
<A NAME="RU80511ST-14D">14d</A>
Lee S.
MacMillan DWC.
J. Am.
Chem. Soc.
2007,
129:
15438
<A NAME="RU80511ST-14E">14e</A>
Stefani HA.
Cella R.
Vieira AS.
Tetrahedron
2007,
63:
3623
<A NAME="RU80511ST-14F">14f</A>
Vieira AS.
Ferreira FP.
Fiorante PF.
Guadagnin RC.
Stefani HA.
Tetrahedron
2008,
64:
3306
<A NAME="RU80511ST-14G">14g</A>
Vieira AS.
Fiorante PF.
Hough TLS.
Ferreira FP.
Ludtke DS.
Stefani HA.
Org. Lett.
2008,
10:
5215
<A NAME="RU80511ST-14H">14h</A>
Mitchell TA.
Bode JW.
J.
Am. Chem. Soc.
2009,
131:
18057
<A NAME="RU80511ST-14I">14i</A>
Zeng J.
Vedachalam S.
Xiang S.
Liu X.-W.
Org. Lett.
2011,
13:
42
<A NAME="RU80511ST-14J">14j</A>
Molander GA.
Cavalcanti LN.
J.
Org. Chem.
2011,
76:
7195
<A NAME="RU80511ST-14K">14k</A>
Larouche-Gauthier R.
Elford TG.
Aggarwal V.
J. Am. Chem. Soc.
2011,
133:
16794
<A NAME="RU80511ST-15">15</A>
Typical Procedure
for a Transition-Metal-Free Cross-Coupling Reaction of Allylic Bromides
with Aryl- and Vinylboronic Acids: A mixture of 4-benzyloxyphenyl boronic
acid (1d; 0.65 mmol, 1.3 equiv), cinnamyl
bromide (2a; 0.5 mmol), and Cs2CO3 (0.75
mmol, 1.5 equiv) in CH2Cl2-H2O
(1.65 mL, 10:1) was stirred at 60 ˚C for 18 h. After the
reaction was completed, the reaction mixture was treated with aq
1 N HCl, extracted with CH2Cl2 and dried over
MgSO4. The organic layer was concentrated and the resulting
residue was purified by column chromatography on silica gel (hexane-EtOAc,
100:1) to give (E)-3-(4-benzyloxyphenyl)-1-phenyl-1-propene
(3da) as a white solid in 91% yield
(136.6 mg, 0.455 mmol); mp 44-48 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 3.49 (d, J = 6.9 Hz, 2 H), 5.05 (s, 2
H), 6.34 (dt, J = 15.6, 6.9
Hz, 1 H), 6.43 (d, J = 15.6 Hz,
1 H), 6.93 (d, J = 8.7 Hz, 2
H), 7.16 (d, J = 8.7 Hz, 2 H), 7.20
(t, J = 7.4 Hz, 1 H), 7.27-7.39
(m, 7 H), 7.43 (d, J = 6.9 Hz,
2 H). ¹³C NMR (125 MHz, CDCl3): δ = 38.6,
70.2, 115.0, 126.2, 127.2, 127.6, 128.0, 128.6, 128.7, 129.7 (two peaks
overlap), 130.9, 133.0, 137.3, 137.6, 157.4. IR (neat): 3031, 1454,
1231 cm-¹. HRMS (EI): m/z [M]+ calcd
for C22H20O: 300.1514; found: 300.1512.